RISC-V Memor)
Tutorial

Dan Lu i

< nVIDIA.

ABOUT ME

Senior Research Scientist at NVIDIA in Santa Clara, CA
PhD from Princeton in 2015
Chair of RISC-V Memory Consistency Model task group

Co-responsible for NVIDIA GPU memory consistency model

OUTLINE

Setting the Stage

Litmus Tests

RISC-V Weak Memory Ordering (“RVWMO”)
Extensions: “Zam” and “Ztso”
Documentation and Tools

Conclude

WHAT IS A MEMORY CONSISTENCY MODEL?

Specifies the values that can be returned by loads

WHY DO WE NEED A MEMORY MODEL?

WHY DO WE NEED A MEMORY MODEL?

av

...to give everyone a headache?

>

WHY DO WE NEED A MEMORY MODEL?

For the same reason we need
any other technical specification:

It is (one specific part of) the
contract between the software
and the implementation about
the set of legal behaviors

WHY DO WE NEED A MEMORY MODEL?

For the same reason we need
any other technical specification:

It is (one specific part of) the
contract between the software
and the implementation about
the set of legal behaviors

The other parts of the contract are defined by the rest of the ISA specification
(including the ISA Formal Specification; see that TG’s tutorial later today)

A WIDE RANGE OF MEMORY MODELS

Note: Low
diagram obviously not to scale, Performance

just a rough picture @ Sequtil
Consistency

(RVWMO) ’
IBM Power

NVIDIA GPUs
Implementers /_)— Programmers

9

Hard for Hard for

A WIDE RANGE OF MEMORY MODELS

Note: Low | There is a big cliff here called
: Performance | F— “multi-copy-atomicity”

diagram obviously not to scale,
just a rough picture ©

IBM Power

NVIDIA GPUs
Implementers /_)— Programmers

10

Hard for Hard for

SOME CASES ARE EASY (RELATIVELY)...

Initial condition on both harts: sO == address x; s1 == address .
Initial conditions in memory: all locations initialized to 0

Hart O Hart 1
litl, 1 loop:

sw t1, 0(s0) lw a0, 0(s1)
fence w,w beqz a0, loop
sw t1, O(s1) fencer,r

lw al, 0(s0)

Final output: what are the possible final values of a0 and al on hart 17

SOME CASES ARE EASY (RELATIVELY)...

Initial condition on both harts: sO == address x; s1 == address .
Initial conditions in memory: all locations initialized to 0

Hart O Hart 1
litl, 1 loop:
sw t1, 0(s0) lw a0, 0(s1)
fence w,w beqz a0, loop
sw t1, O(s1) fencer,r
lw al, 0(s0)

Final output: what are the possible final values of a0 and al on hart 17

Only possible outcome is a0 == al ==

SOME CASES ARE HARD...

Should this outcome be permitted or forbidden? We’re
not even sure ourselves...

Hart O Hart 1

1i t1, 1 1i t1, 1

lw a0,0(s0) (d) sw t1,4(s1)

fence rw,rw (e) 1d a1,0(s1)

sw t1,0(s1) (f) 1w a2,4(s1)
xor a3,a2,a2
add s0,s0,a3

(g) sw a2,0(s0)

Outcome: a0=1, al=0x100000001, al=1

Figure A.22: Mixed-size discrepancy (permitted by axiomatic models, forbidden by operational
model)

ARCHITECTURE VS. MICROARCHITECTURE

An implementation can do anything it wants under the
covers, as long as the load return values satisfy RVWMO

i.e., implementations can speculate past a lot of these
rules, as long as they make sure to, e.g., squash and replay
whenever the violation might actually become observable

OPERATIONAL VS. AXIOMATIC

In modern practice, at ISA level, two common modeling approaches:
Axiomatic: define a set of criteria (“axioms”) to be satisfied

Executions permitted unless they fail one or more axioms

Operational: define a golden abstract machine model

Executions forbidden unless producible when executing this model

Ideally: figure out how to meet in the middle (can be difficult!)

lots of gray area, obscure code, etc.

SEQUENTIAL CONSISTENCY [LamporT 797

Axiomatic Operational

There is a total order on all Harts take turn executing
memory operations. The order instructions. The order is non-
is non-deterministic. deterministic.

That total order respects Each hart executes its own
program order instructions in order

Loads return the value written Loads return the value written
by the latest store to the same by the most recent preceding
address in the total order store to the same address

SEQUENTIAL CONSISTENCY [LamporT 797
Axiomatic

: Global memor
There is a total order on all <[order d]
memory operations. The order

is non-deterministic.

Preserved Program
That total order respects ;[Order (PPO)]
program order
Loads return the value written ! Load Value Axiom]
by the latest store to the same
address in the total order

GLOBAL MEMORY ORDER

A total order over all memory operations in a program

A memory operation “performs” (enters the global memory
order) when:

a load determines its return value

a store becomes globally visible

SEQUENTIAL CONSISTENCY [LamporT 797

Axiomatic Operational

There is a total order on all Harts take turn executing
memory operations. The order instructions. The order is non-
is non-deterministic. deterministic.

That total order respects Each hart executes its own
program order instructions in order

Loads return the value written Loads return the value written
by the latest store to the same by the most recent preceding
address in the total order store to the same address

TOTAL STORE ORDERING (SPARC, X86, RVTSO)

Axiomatic Operational

There is a total order on all Harts take turn executing steps. The
memory operations. The order order is non-deterministic.
is non-deterministic.

Each hart executes its own
instructions in order

That total order respects
program order, except Stores execute in two steps: 1) enter
Store->Load ordering store buffer, 2) drain to memory

L oads return the value written Loads first try to forward from the

store buffer. If that fails, they
by the latest store to the same return the value written by the most

address in program or memory recent preceding store to the same
order (whichever is later) address

20

ADDING A STORE BUFFER

H/W thread “ee H/W threard

NG WM

Shared Memory

Figure 1: x86-TSO block diagram

[Sewell et al., CACM “10]

If a load bypasses a store in the
(FIFO) store buffer, then the
load appears before the store in
global memory order

The load determines its return
value before the store becomes
globally visible

The performance win is too
important...the model needs to
be changed to account for this!

TOTAL STORE ORDERING (SPARC, X86, RVTSO)

Axiomatic Operational

There is a total order on all Harts take turn executing steps. The
memory operations. The order order is non-deterministic.
is non-deterministic.

Each hart executes its own
instructions in order

That total order respects
program order, except Stores execute in two steps: 1) enter
Store->Load ordering store buffer, 2) drain to memory

L oads return the value written Loads first try to forward from the

store buffer. If that fails, they
by the latest store to the same return the value written by the most

address in program or memory recent preceding store to the same
order (whichever is later) address

22

TOTAL STORE ORDERING (SPARC, X86, RVTSO)
Axiomatic

: Global memor
There is a total order on all <[order d J
memory operations. The order

is non-deterministic.

Preserved Program
That total order respects Order (PPO)
program order, except
Store—>Load ordering
: Load Value Axiom J
Loads return the value written
by the latest store to the same }

address in program or memory
order (whichever is later)

RISC-V WEAK MEMORY ORDERING (RVWMO)

Axiomatic Operational

There is a total order on all Harts take turn executing steps. The
memory operations. The order order is non-deterministic.
is non-deterministic.

Each hart executes its own
instructions in order

That total order respects
thirteen specific patterns
(next slide)

L oads return the value written Loads first try to forward from the

store buffer. If that fails, they
by the latest store to the same return the value written by the most

address in program or memory recent preceding store to the same
order (whichever is later) address

24

RISC-V WEAK MEMORY ORDERING (RVWMO)
Axiomatic

: Global memor
There is a total order on all <[order d J
memory operations. The order

is non-deterministic.

Preserved Program
That total order respects Order (PPO)
thirteen specific patterns
(next slide)
: Load Value Axiom J
Loads return the value written
by the latest store to the same }

address in program or memory
order (whichever is later)

RVWMO PPO RULES IN A NUTSHELL

Preserved Program Order: if A appears before B in program order,
and A and B match one of the patterns below, then A appears
before B in global memory order.

N
q Load | | AMO/SC Laq | () ° Q
Overlap | | Overlap | | Overlap %C;Cti;/ g;g/ g
O 0= @ O
- J
Y

except “rsw” with pr/pw/sr/sw except ctrl deps.
and “fri;rfi” set appropriately RCsc where B is a load

PPO RULE 1

If A and B access the same address (or have any

overlapping footprint), then A must appear before B
in global memory order:

Overlap A load A must determine its value before B
Store becomes globally visible

A store A must become globally visible before B
becomes globally visible

AMO/SC

Overlap

Load

PPO RULE 3

A load B cannot determine its return value by
forwarding from an Atomic Memory Operation or

Store-Conditional operation that has not yet become
globally visible

AMO/SC

Overlap

Load

PPO RULE 3

A load B cannot determine its return value by
forwarding from an Atomic Memory Operation or

Store-Conditional operation that has not yet become
globally visible

(Recall: this defines the architectural rules.
Implementations can do whatever they want, as
long as all outcomes are legal)

with pr/pw/sr/sw
set appropriately

PPO RULE 4
fence [r][w]l[i][o], [r][w][i][o]

Orders operations in the predecessor set before
operations in the successor set

PR: previous reads. SR: subsequent reads
PW: previous writes. SW: subsequent writes

Pl: previous I/0 reads. Sl: subsequent I/0 reads

PO: previous 1/0 writes. SO: subsequent 1/0 writes

PPO RULES 5-7

AMOs and LR/SC have optional acquire and release
annotations for release consistency

All operations following an acquire in program
order also following it in global memory order

All operations preceding a release in program
order also precede it in global memory order

A release that precedes an acquire in program
order also precedes it in global memory order

i.e., the RCsc variant of release consistency

PPO RULES 9-11

If B has a syntactic address, control, or data dependency
on A, then A precedes B in global memory order

Except control dependencies where B is a store

Address dependency: the result of A is used to
determine the address accessed by B

Addr/ctrl/
data dep.

Control dependency: the result of A feeds a branch
except ctrl deps. that determines whether B is executed at all
where B is a load

Data dependency: the result of A is used to determine
the value written by store B

Note: ordering maintained regardless of actual values!

32

“(addr|data);rfi”
or “addr;po”

PPO RULES 12-13

B follows M in program order, and M has an address
dependency on A

B returns a value from an earlier store M in the same
hart, and M has an address or data dependency on A

Most processors will maintain these naturally, yet most
programmers won’t ever use them anyway

We made them explicit rules so that the operational and
axiomatic models all agree

And also for Linux, which has similar rules too

PPO RULE 8

A load-reserve operation determines its value before the
paired store-conditional becomes globally visible

(Mostly redundant with rules 1 and 11, except in rare
cases of mismatched addresses and no data dependency)

PPO RULE 2

Same-address load-load ordering is also maintained, with
two exceptions:

Load Both return values come from the same store

Overlap A form of architecturally-visible speculation

Load Common in many implementations

except trsw B forwards from a store M between A and B in
program order

B can determine its value from the store buffer while
A is still fetching an older value from memory

ATOMICITY OF AMO AND LR/SC

AMOs grab an old value in memory, perform an arithmetic operation (except for
swap), and write the new value to memory, all in one single atomic operation

One node in the global memory order

LR grabs a reservation. SC performs a store if the reservation is still valid, and then
releases the reservation.

A reservation can be killed for any reason. A reservation must be killed if there is
a store to the reserved address range from any other hart.

Certain constrained LR/SC sequences guaranteed to eventually succeed (see spec)

PROGRESS AXIOM

No operation can be preceded in the global memory order by
an infinite sequence of operations from other harts

Very intentionally the weakest forward progress guarantee
that is needed to make the memory model work

Does not imply any stronger notion of fairness!

...AND THAT’S IT!

MEMORY MODEL ISA EXTENSIONS

“Zam” extends “A” by permitting misaligned AMOs
“A” without “Zam” now forbids misaligned AMOs or LR/SC pairs

“Ztso” strengthens the baseline memory model to TSO
TSO-only code is not backwards-compatible with RVWMO

ONGOING/FUTURE WORK

Mixed-size, partially-overlapping
memory acceses

*
Formalize instruction fetches and FENCE.|
TLB flushes and SFENCE.VMA, etc. \v

Integration with other extensions (V, J, N, T, ...)

Integration with the ISA formalization task group’s effort

Cache flush/writeback/etc. operations

(The task group logistics for all this are still TBD)

DOCUMENTATION & TOOLS

L1777 777777707777777777777777777777777777777771777777777777777

Appendix A: two dozen pages /1" =vir’ ppo-
explaining the details in plain English e PrerrresrroessmerprsaETS

fun o :
PP (x Generate global memory order x*)
// same (********************************)
po_loc

Appendix B: Two axiomatic models and T amo | R TR et e ateer g vekte o e sane Tocution
one operational model, with ’
associated tools (Alloy, herd, rmem)

More than 7000 litmus tests online
(also to be used to test compliance)

Hart O fence ppou

1w a0,0(s0) || (D

fence rw,rw (e)

sw s2,0(s1) (£)
Outcome: a0=1,

c: Wx=t

Figure A.16: Because of the address dependency from (d) to (e), (d) also precedes (f) (outcome
forbidden)

MEMORY MODEL RATIFICATION TIMELINE

Released for public review on 5/2/18

Foundation requires at least 45 days for
public review. This will end no earlier
than 6/16/18.

If you have comments or feedback:
send to isa-dev

send as a PR or issue on riscv-isa-manual GitHub repo

send to me directly

TOTAL STORE ORDERIN

Axiomatic

ppo := (program order) - W>R
acyclic(ppo U rfe U co U fr U fence)
acyclic(po_loc U rf U co U fr)

To T,
a: Wx=1 c: Ry=1
| Lo
b: Wy=1 d: Rx=0
mp+lwfence+ppo

Fig. 8. The message passing pattern mp with lightweight fence and ppo (forbidden)

[Alglave et al., TOPLAS “09]

PARC, X86, RVTSO)

Operational

3.1 The Abstract Machine

Our programmer’s model of a multiprocessor x86 system
is illustrated in Figure 1. At the top of the figure are a
number of hardware threads, each corresponding to a single
in-order stream of instruction execution. (In this program-
mer’'s model there is no need to consider physical processors
explicitly; it is hardware threads that correspond to the Proc

Neolnmnein the tecte we oive) They interact with a storage

| H/W thread I '"l Hneread | ses a shared

lock to indi-

lusive access
thread.
described in

thread must
Te is one, to

from shared

Shared Memory i [buffer of that

ad must first

Figure 1: x86-TSO block diagram xstruction. it

flushes 1ts store buffer and relinquishes the lock. While
the lock is held by one thread, no other thread can
read.

rom a by thread p
ory barrier by thread p

K'd instruction by thread p

In of the storage subsystem.
p's store buffer to the shared

rdware thread p has

re buffer for address
as v as the newest write to

o its store buffer for address

an silently dequeue t
4

mnters

buffer is not
mpty the
):

1d, it can begin a LOCK'd

hd its store buffer is empty, it
ction.

[Sewell et al., CACM “10]

RVWMO
Axiomatic (App. B.2 Operational (App. B.3

AL Traositions

ppo := (13 rules, on next slide

This is an alternative presentation of the RVWMO memory model in operational style. It aims to
admit exactly the same extensional behaviour as the axiomatic presentation: for any given program,

The axiomatic presentation is defined as a predicate on complete candidate executions. In contrast,

this operational presentation has an abstract microarchitectural flavour: it is expressed as a state
machine, with states that are an abstract representation of hardware machine states, and with
explicit out-of-order and speculative execution (but abstracting from more implementation-specific
hd microarchitectural details such as register renaming, store buffers, cache hierarchies, cache proto-

aC C l] C O lOC U rf U CO U fr cols, ete.). As such, it can provide useful intuition. It can also construct executions incrementally,
I aking it possible to interactively and randomly explore the behaviour of larger examples, while

the axiomatic model requires complete candidate executions over which the axioms can be checked

The operational presentation covers mixed-size execution, with potentially overlapping memory
accesses of different power-of-two byte sizes. Misaligned accesses are broken up into single-byte

a: Rx=0 e: Ry=0 accesses

p data ppo An interactive version of the model, together with a library of litmus tests, is provided online:
http://www.cl.cam.ac.uk/~pes20/rmem. This is integrated with a fragment of the RISC-V ISA
data ppo semantics (RV64I and A) expressed explicitly in Sail (https://github.com/rems-project/sail)).

Initial values: 0(s0)=1; 0(s1)=1

b: Rz*=0 f: Wx=0 Below is an informal introduction of the model states and transitions. The description of the formal
Hart 0 Hart 1 model starts in the next subsection.

1d a0,0(s0) (e) 1d a3,0(s2) pPpo Terminology: In contrast to the axiomatic presentation, here every memory operation is either a
1r a1,0(s1) (f) sd a3,0(s0) load or a store. Hence, AMOs give rise to two distinct memory operations, a load and a store

When used in conjunction with “instruction”, the terms “load” and “store” refer to instructions
sc a2,a0,0(s1) C: WZ‘—O that give rise to such memory operations. As such, both include AMO instructions. The term
sd a2 ,0(52) “acquire” refergt fruct it N : sation) suith the aconie RCog acanize ROse

Outcome: a0=0, a3=0 data ppo annotation. T o-

el [T S+ (0) Hart n

d: Wy=0 Model stated T l T l

Figure A.13: A variant of the LB litmus test (outcome forbidden) Shared Memory

MULTI-COPY ATOMICITY

A load may only return a value from:
An earlier store from the same hart (“hardware thread”)

A store that is globally visible

In other words, a store may not “peek” into a neighbor
hart’s private store buffer

WHO FEELS THE PAIN?

C/C++ MM Java MM Linux MM Synchronization

Libraries

Canonical Canonical Canonical Hand

RISC-V ISA Memory Consistency Model

Misconception: end users will have to deal with the memory model
Reality: end users rarely interact with the ISA memory model directly
Burden falls instead on library/compiler writers and microarchitects

47

MEMORY MODEL TASK GROUP PROGRESS

May 2017 Workshop: Formed the task group

(...debate...)
November 2017 Workshop: Settled on the basics

RVWMO baseline, and optional RVTSO extension

(...refinement...)

May 2018 Workshop: released for ratification!

Public review period runs May 2 through June 16

RISC-V MEMORY MODEL SPECIFICATION

Chapter 6: RISC-V Weak Memory Ordering (“RVWMO”)

Chapter 20: “Zam” Std. Extension for Misaligned AMOs

Chapter 21: “Ztso” Std. Extension for Total Store Ordering

Appendix A: Explanatory Material and Litmus Tests

Appendix B: Formal Memory Model Specifications

RVWMO RULES IN A NUTSHELL

Load Value Axiom: each byte of each load i returns the value
written to that byte by the store that is the latest in global memory
order among the following stores:

Stores that write that byte and that precede i in the global memory order
Stores that write that byte and that precede i in program order

Atomicity Axiom: no store from another hart can appear in the
global memory order between a paired LR and successful SC

(this axiom simplified here for clarity...see spec for complete definition)

Progress Axiom: no memory operation may be preceded in the
global memory order by an infinite sequence of other memory
operations

