
Dan Lustig
May 7, 2018

RISC-V Memory Consistency Model
Tutorial

2

ABOUT ME

• Senior Research Scientist at NVIDIA in Santa Clara, CA

• PhD from Princeton in 2015

• Chair of RISC-V Memory Consistency Model task group

• Co-responsible for NVIDIA GPU memory consistency model

3

OUTLINE

• Setting the Stage

• Litmus Tests

• RISC-V Weak Memory Ordering (“RVWMO”)

• Extensions: “Zam” and “Ztso”

• Documentation and Tools

• Conclude

4

WHAT IS A MEMORY CONSISTENCY MODEL?

Specifies the values that can be returned by loads

5

WHY DO WE NEED A MEMORY MODEL?

This Photo by Unknown Author is licensed under CC BY-NC-ND

6

WHY DO WE NEED A MEMORY MODEL?

…to give everyone a headache?

This Photo by Unknown Author is licensed under CC BY-NC-ND

7

WHY DO WE NEED A MEMORY MODEL?

For the same reason we need
any other technical specification:

It is (one specific part of) the
contract between the software
and the implementation about
the set of legal behaviors

This Photo by Unknown Author is licensed under CC BY-SA

8

WHY DO WE NEED A MEMORY MODEL?

For the same reason we need
any other technical specification:

It is (one specific part of) the
contract between the software
and the implementation about
the set of legal behaviors

This Photo by Unknown Author is licensed under CC BY-SA

The other parts of the contract are defined by the rest of the ISA specification
(including the ISA Formal Specification; see that TG’s tutorial later today)

9

A WIDE RANGE OF MEMORY MODELS

Sequential
Consistency

NVIDIA GPUs Hard for
Programmers

Low
Performance

IBM Power

Note:
diagram obviously not to scale,

just a rough picture J

RISC-V
(RVWMO)To

tal
 St

ore

Ord
er

ing
 (T

SO
)

Hard for
Implementers

10

A WIDE RANGE OF MEMORY MODELS

Sequential
Consistency

NVIDIA GPUs Hard for
Programmers

Low
Performance

RISC-V
(RVWMO)

Note:
diagram obviously not to scale,

just a rough picture J

To
tal

 St
ore

Ord
er

ing
 (T

SO
)

Hard for
Implementers

IBM Power

There is a big cliff here called
“multi-copy-atomicity”

11

SOME CASES ARE EASY (RELATIVELY)…
Initial condition on both harts: s0 == address x; s1 == address y.

Initial conditions in memory: all locations initialized to 0

Final output: what are the possible final values of a0 and a1 on hart 1?

Hart 0 Hart 1
li	t1,	1
sw t1,	0(s0)
fence	w,w
sw t1,	0(s1)

loop:
lw a0,	0(s1)
beqz a0,	loop
fence	r,r
lw a1,	0(s0)

12

SOME CASES ARE EASY (RELATIVELY)…
Initial condition on both harts: s0 == address x; s1 == address y.

Initial conditions in memory: all locations initialized to 0

Final output: what are the possible final values of a0 and a1 on hart 1?

Only possible outcome is a0	==	a1	==	1

Hart 0 Hart 1
li	t1,	1
sw t1,	0(s0)
fence	w,w
sw t1,	0(s1)

loop:
lw a0,	0(s1)
beqz a0,	loop
fence	r,r
lw a1,	0(s0)

13

SOME CASES ARE HARD…
• Should this outcome be permitted or forbidden? We’re

not even sure ourselves…

14

ARCHITECTURE VS. MICROARCHITECTURE

An implementation can do anything it wants under the
covers, as long as the load return values satisfy RVWMO

i.e., implementations can speculate past a lot of these
rules, as long as they make sure to, e.g., squash and replay
whenever the violation might actually become observable

15

OPERATIONAL VS. AXIOMATIC
In modern practice, at ISA level, two common modeling approaches:

Axiomatic: define a set of criteria (“axioms”) to be satisfied

• Executions permitted unless they fail one or more axioms

Operational: define a golden abstract machine model

• Executions forbidden unless producible when executing this model

Ideally: figure out how to meet in the middle (can be difficult!)

• lots of gray area, obscure code, etc.

16

SEQUENTIAL CONSISTENCY [LAMPORT ‘79]

Axiomatic
1. There is a total order on all

memory operations. The order
is non-deterministic.

2. That total order respects
program order

3. Loads return the value written
by the latest store to the same
address in the total order

Operational
1. Harts take turn executing

instructions. The order is non-
deterministic.

2. Each hart executes its own
instructions in order

3. Loads return the value written
by the most recent preceding
store to the same address

17

SEQUENTIAL CONSISTENCY [LAMPORT ‘79]

Axiomatic
1. There is a total order on all

memory operations. The order
is non-deterministic.

2. That total order respects
program order

3. Loads return the value written
by the latest store to the same
address in the total order

Operational
1. Harts take turn executing

instructions. The order is non-
deterministic.

2. Each hart executes its own
instructions in order

3. Loads return the value written
by the most recent preceding
store to the same address

Global memory
order

Preserved Program
Order (PPO)

Load Value Axiom

18

GLOBAL MEMORY ORDER

A total order over all memory operations in a program

A memory operation “performs” (enters the global memory
order) when:

• a load determines its return value

• a store becomes globally visible

19

SEQUENTIAL CONSISTENCY [LAMPORT ‘79]

Axiomatic
1. There is a total order on all

memory operations. The order
is non-deterministic.

2. That total order respects
program order

3. Loads return the value written
by the latest store to the same
address in the total order

Operational
1. Harts take turn executing

instructions. The order is non-
deterministic.

2. Each hart executes its own
instructions in order

3. Loads return the value written
by the most recent preceding
store to the same address

20

TOTAL STORE ORDERING (SPARC, X86, RVTSO)
Axiomatic

1. There is a total order on all
memory operations. The order
is non-deterministic.

2. That total order respects
program order, except
StoreàLoad ordering

3. Loads return the value written
by the latest store to the same
address in program or memory
order (whichever is later)

Operational
1. Harts take turn executing steps. The

order is non-deterministic.

2. Each hart executes its own
instructions in order

3. Stores execute in two steps: 1) enter
store buffer, 2) drain to memory

4. Loads first try to forward from the
store buffer. If that fails, they
return the value written by the most
recent preceding store to the same
address

21

ADDING A STORE BUFFER
If a load bypasses a store in the
(FIFO) store buffer, then the
load appears before the store in
global memory order

The load determines its return
value before the store becomes
globally visible

The performance win is too
important…the model needs to
be changed to account for this!

[Sewell et al., CACM ‘10]

22

TOTAL STORE ORDERING (SPARC, X86, RVTSO)
Axiomatic

1. There is a total order on all
memory operations. The order
is non-deterministic.

2. That total order respects
program order, except
StoreàLoad ordering

3. Loads return the value written
by the latest store to the same
address in program or memory
order (whichever is later)

Operational
1. Harts take turn executing steps. The

order is non-deterministic.

2. Each hart executes its own
instructions in order

3. Stores execute in two steps: 1) enter
store buffer, 2) drain to memory

4. Loads first try to forward from the
store buffer. If that fails, they
return the value written by the most
recent preceding store to the same
address

23

TOTAL STORE ORDERING (SPARC, X86, RVTSO)
Axiomatic

1. There is a total order on all
memory operations. The order
is non-deterministic.

2. That total order respects
program order, except
StoreàLoad ordering

3. Loads return the value written
by the latest store to the same
address in program or memory
order (whichever is later)

Operational
1. Harts take turn executing steps. The

is non-deterministic.

2. Each hart executes its own
instructions in order

3. Stores execute in two steps: 1) enter
store buffer, 2) drain to memory

4. Loads first try to forward from the
store buffer. If that fails, they
return the value written by the most
recent preceding store to the same
address

Global memory
order

Preserved Program
Order (PPO)

Load Value Axiom

24

RISC-V WEAK MEMORY ORDERING (RVWMO)
Axiomatic

1. There is a total order on all
memory operations. The order
is non-deterministic.

2. That total order respects
thirteen specific patterns
(next slide)

3. Loads return the value written
by the latest store to the same
address in program or memory
order (whichever is later)

Operational
1. Harts take turn executing steps. The

order is non-deterministic.

2. Each hart executes its own
instructions in order

3. Multiple steps for each instruction
(see spec Appendix B)

4. Loads first try to forward from the
store buffer. If that fails, they
return the value written by the most
recent preceding store to the same
address

25

RISC-V WEAK MEMORY ORDERING (RVWMO)
Axiomatic

1. There is a total order on all
memory operations. The order
is non-deterministic.

2. That total order respects
thirteen specific patterns
(next slide)

3. Loads return the value written
by the latest store to the same
address in program or memory
order (whichever is later)

Operational
1. Harts take turn executing steps. The

order is non-deterministic.

2. Each hart executes its own
instructions in order

3. Multiple steps for each instruction
(see spec Appendix B)

4. Loads first try to forward from the
store buffer. If that fails, they
return the value written by the most
recent preceding store to the same
address

Global memory
order

Preserved Program
Order (PPO)

Load Value Axiom

26

RVWMO PPO RULES IN A NUTSHELL
• Preserved Program Order: if A appears before B in program order,

and A and B match one of the patterns below, then A appears
before B in global memory order.

A

BStore

Overlap

A

B

Fence

with pr/pw/sr/sw
set appropriately

A

B

.aq A

B.rl

A

B.aq

.rl A

B

Addr/ctrl/
data dep.

except ctrl deps.
where B is a load

A

BSC

LRA

BLoad

Overlap

Load

except “rsw”
and “fri;rfi” RCsc

A

BLoad

Overlap

AMO/SC A

B

“(addr|data);rfi”
or “addr;po”

27

PPO RULE 1

If A and B access the same address (or have any
overlapping footprint), then A must appear before B
in global memory order:

• A load A must determine its value before B
becomes globally visible

• A store A must become globally visible before B
becomes globally visible

A

BStore

Overlap

28

PPO RULE 3

A load B cannot determine its return value by
forwarding from an Atomic Memory Operation or
Store-Conditional operation that has not yet become
globally visible

A

BLoad

Overlap

AMO/SC

29

PPO RULE 3
A load B cannot determine its return value by
forwarding from an Atomic Memory Operation or
Store-Conditional operation that has not yet become
globally visible

(Recall: this defines the architectural rules.
Implementations can do whatever they want, as
long as all outcomes are legal)

A

BLoad

Overlap

AMO/SC

30

PPO RULE 4
fence	[r][w][i][o],	[r][w][i][o]

Orders operations in the predecessor set before
operations in the successor set

PR: previous reads. SR: subsequent reads

PW: previous writes. SW: subsequent writes

PI: previous I/O reads. SI: subsequent I/O reads

PO: previous I/O writes. SO: subsequent I/O writes

A

B

Fence

with pr/pw/sr/sw
set appropriately

31

PPO RULES 5-7
AMOs and LR/SC have optional acquire and release
annotations for release consistency

• All operations following an acquire in program
order also following it in global memory order

• All operations preceding a release in program
order also precede it in global memory order

• A release that precedes an acquire in program
order also precedes it in global memory order

• i.e., the RCsc variant of release consistency

A

B

.aq A

B.rl

A

B.aq

.rl

RCsc

32

PPO RULES 9-11
If B has a syntactic address, control, or data dependency
on A, then A precedes B in global memory order

• Except control dependencies where B is a store

• Address dependency: the result of A is used to
determine the address accessed by B

• Control dependency: the result of A feeds a branch
that determines whether B is executed at all

• Data dependency: the result of A is used to determine
the value written by store B

Note: ordering maintained regardless of actual values!

A

B

Addr/ctrl/
data dep.

except ctrl deps.
where B is a load

33

PPO RULES 12-13
1. B follows M in program order, and M has an address

dependency on A

2. B returns a value from an earlier store M in the same
hart, and M has an address or data dependency on A

Most processors will maintain these naturally, yet most
programmers won’t ever use them anyway

We made them explicit rules so that the operational and
axiomatic models all agree

• And also for Linux, which has similar rules too

A

B

“(addr|data);rfi”
or “addr;po”

34

PPO RULE 8

A load-reserve operation determines its value before the
paired store-conditional becomes globally visible

(Mostly redundant with rules 1 and 11, except in rare
cases of mismatched addresses and no data dependency)

A

BSC

LR

35

PPO RULE 2

Same-address load-load ordering is also maintained, with
two exceptions:

1. Both return values come from the same store

• A form of architecturally-visible speculation

• Common in many implementations

2. B forwards from a store M between A and B in
program order

• B can determine its value from the store buffer while
A is still fetching an older value from memory

A

BLoad

Overlap

Load

except “rsw”
and “fri;rfi”

36

ATOMICITY OF AMO AND LR/SC
AMOs grab an old value in memory, perform an arithmetic operation (except for
swap), and write the new value to memory, all in one single atomic operation

• One node in the global memory order

LR grabs a reservation. SC performs a store if the reservation is still valid, and then
releases the reservation.

• A reservation can be killed for any reason. A reservation must be killed if there is
a store to the reserved address range from any other hart.

• Certain constrained LR/SC sequences guaranteed to eventually succeed (see spec)

37

PROGRESS AXIOM

No operation can be preceded in the global memory order by
an infinite sequence of operations from other harts

• Very intentionally the weakest forward progress guarantee
that is needed to make the memory model work

• Does not imply any stronger notion of fairness!

38

…AND THAT’S IT!

39

MEMORY MODEL ISA EXTENSIONS

• “Zam” extends “A” by permitting misaligned AMOs

• “A” without “Zam” now forbids misaligned AMOs or LR/SC pairs

• “Ztso” strengthens the baseline memory model to TSO

• TSO-only code is not backwards-compatible with RVWMO

40

ONGOING/FUTURE WORK
• Mixed-size, partially-overlapping

memory acceses

• Formalize instruction fetches and FENCE.I
TLB flushes and SFENCE.VMA, etc.

• Integration with other extensions (V, J, N, T, …)

• Integration with the ISA formalization task group’s effort

• Cache flush/writeback/etc. operations

• (The task group logistics for all this are still TBD)
This Photo by Unknown Author is licensed under CC BY

41

DOCUMENTATION & TOOLS
• Appendix A: two dozen pages

explaining the details in plain English

• Appendix B: Two axiomatic models and
one operational model, with
associated tools (Alloy, herd, rmem)

• More than 7000 litmus tests online
• (also to be used to test compliance)

42

MEMORY MODEL RATIFICATION TIMELINE
• Released for public review on 5/2/18

• Foundation requires at least 45 days for
public review. This will end no earlier
than 6/16/18.

• If you have comments or feedback:

• send to isa-dev

• send as a PR or issue on riscv-isa-manual GitHub repo

• send to me directly

This Photo by Unknown Author is licensed under CC BY-NC-ND

43

44

TOTAL STORE ORDERING (SPARC, X86, RVTSO)
Axiomatic

ppo := (program order) – WàR

acyclic(ppo U rfe U co U fr U fence)

acyclic(po_loc U rf U co U fr)

Operational

[Sewell et al., CACM ‘10][Alglave et al., TOPLAS ‘09]

45

RVWMO
Axiomatic (App. B.2)

ppo := (13 rules, on next slide)

acyclic(ppo U rfe U co U fr)

acyclic(po_loc U rf U co U fr)

Operational (App. B.3)

46

MULTI-COPY ATOMICITY
A load may only return a value from:

• An earlier store from the same hart (“hardware thread”)

• A store that is globally visible

In other words, a store may not “peek” into a neighbor
hart’s private store buffer

47

WHO FEELS THE PAIN?

RISC-V ISA Memory Consistency Model

C/C++ MM

Canonical
Mapping

Java MM

Canonical
Mapping

Linux MM

Canonical
Mapping

Synchronization
Libraries

Hand
Mapping

…

• Misconception: end users will have to deal with the memory model

• Reality: end users rarely interact with the ISA memory model directly

• Burden falls instead on library/compiler writers and microarchitects

48

MEMORY MODEL TASK GROUP PROGRESS

• May 2017 Workshop: Formed the task group
(…debate…)

• November 2017 Workshop: Settled on the basics

• RVWMO baseline, and optional RVTSO extension
(…refinement…)

• May 2018 Workshop: released for ratification!

• Public review period runs May 2 through June 16

49

RISC-V MEMORY MODEL SPECIFICATION

• Chapter 6: RISC-V Weak Memory Ordering (“RVWMO”)

• Chapter 20: “Zam” Std. Extension for Misaligned AMOs

• Chapter 21: “Ztso” Std. Extension for Total Store Ordering

• Appendix A: Explanatory Material and Litmus Tests

• Appendix B: Formal Memory Model Specifications

50

RVWMO RULES IN A NUTSHELL

• Load Value Axiom: each byte of each load i returns the value
written to that byte by the store that is the latest in global memory
order among the following stores:

1. Stores that write that byte and that precede i in the global memory order
2. Stores that write that byte and that precede i in program order

• Atomicity Axiom: no store from another hart can appear in the
global memory order between a paired LR and successful SC
• (this axiom simplified here for clarity…see spec for complete definition)

• Progress Axiom: no memory operation may be preceded in the
global memory order by an infinite sequence of other memory
operations

